
会员
智能家居产品 从设计到运营
更新时间:2019-02-25 15:43:19 最新章节:推荐语
书籍简介
本书根据作者多年互联网和智能家居的从业经验编写而成,提出了智能家居产品的三原色模型,并逐步阐述了最好的智能家居产品需要满足的三个条件:优越的技术、友好的用户体验和有效的市场策略。同时,从产品设计、用户和行业参与者等多个角度分析了智能家居这一新兴行业。此外,书中引用的一些国外的产品实例和分析问题的方法与模型,都能带来很多启发。
品牌:人邮图书
上架时间:2015-10-01 00:00:00
出版社:人民邮电出版社
本书数字版权由人邮图书提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
邢袖迪
最新上架
- 会员本书以Python3.10.7为平台,以实际应用为背景,通过概念、公式、经典应用相结合的形式,深入浅出地介绍了Python图形图像处理经典实现。全书共10章,主要包括绪论、迈进Python、Python图形用户界面、数据可视化分析、图像视觉增强分析、图像视觉复原分析、图像视觉几何变换与校正分析、图像视觉分割技术分析、图像视觉描述与特征提取分析、车牌识别分析等内容。通过本书的学习,读者可领略到Py计算机12.3万字
- 会员本书以人工智能技术在合成生物学领域的理论、方法及应用为主线,详细阐述人工智能在合成生物学不同层面设计中的应用进展,深入讨论人工智能在合成生物学实际应用中面临的挑战与困难。本书先概述合成生物学与人工智能基本概念以及发展简史,然后介绍人工智能技术在生物元件、生物模块、生物系统设计方面的应用,并通过案例展示了人工智能与合成生物学技术在生物医药领域的研究进展,最后分析了人工智能驱动合成生物技术的发展趋势,计算机23万字
- 会员本书以人工智能为核心,上篇讲述了人工智能理论知识及发展蓝图规划,目的是帮助读者认识人工智能,找到入局人工智能领域的途径和方法;中篇罗列了可以为人工智能赋能的前沿技术,包括NLP、机器学习、大数据、物联网、区块链等;下篇总结了人工智能对交通、农业、医疗、制造、教育、金融、文娱等行业的影响和作用,旨在让读者了解人工智能是如何在这些行业实现商业化落地的。本书从多个角度出发,描绘了一幅完整的人工智能发展蓝计算机15.8万字
- 会员《PyTorch深度学习与企业级项目实战》立足于具体的企业级项目开发实践,以通俗易懂的方式详细介绍PyTorch深度学习的基础理论以及相关的必要知识,同时以实际动手操作的方式来引导读者入门人工智能深度学习。《PyTorch深度学习与企业级项目实战》共分18章,内容主要包括人工智能、机器学习和深度学习之间的关系,深度学习框架PyTorch2.0的环境搭建,Python数据科学库,深度学习基本原理,计算机10.8万字
同类书籍最近更新
- 会员这本书系统阐述了深度学习方法论在道路短期交通状态时空序列预测领域的最新研究成果。需要着重说明以下几点:1.领域限定在了道路交通,因为交通是个大系统,存在着航空、水运、道路等多种运输方式,而本书所阐述的研究均是针对道路交通领域的数据以及面向道路交通领域的应用;2.本书所讨论的研究问题是道路短期交通状态时空序列预测问题,该问题是时空数据挖掘领域中时空预测问题的一个重要子集,在本书的第1章中将会对这个问人工智能11.4万字
- 会员《深度学习全书——公式+推导+代码+TensorFlow全程案例》共有15章,分为5部分,第一篇说明深度学习的概念,包括数理基础,特点是结合编程解题,加深读者印象,第二篇说明TensorFlow的学习地图,从张量、自动微分、梯度下降乃至神经层的实践,逐步解构神经网络,第三篇介绍CNN算法、影像应用、转移学习等,第四篇则进入自然语言处理及语音识别的领域,介绍RNN/BERT/Transformer算人工智能16.8万字
- 会员本书从基础知识入手,详细讲解通过强化学习和深度学习构建AI系统所需的一切,并通过5个完整的项目实例,循序渐进展示如何使用最佳、最简单的AI编程工具(包括Python、TensorFlow、Keras和PyTorch)构建智能软件。具体内容包括AI工具包、Python基础、AI基础技巧、你的第一个AI模型、销售和广告中的AI、Q学习、物流行业中的AI、人工大脑、自动驾驶车辆中的AI、商业中的AI、深人工智能13万字
- 会员知识图谱作为认知智能的核心技术正蓬勃发展。本书系统全面地介绍了知识图谱的核心技术,既有宏观整体的技术体系,也有关键技术和算法细节,内容包括:知识图谱模式设计的方法论——六韬法;知识图谱构建中的实体抽取和关系抽取;知识存储中的属性图模型及图数据库,重点介绍了JanusGraph分布式图数据库;知识计算中的图论基础,以及中心性、社区检测等经典图计算算法;知识推理中的逻辑推理、几何变换推理和深度学习推理人工智能25.8万字
- 会员作为一门应用型学科,机器学习植根于数学理论,落地于代码实现。这就意味着,掌握公式推导和代码编写,方能更加深入地理解机器学习算法的内在逻辑和运行机制。本书在对全部机器学习算法进行分类梳理的基础之上,分别对监督学习单模型、监督学习集成模型、无监督学习模型、概率模型四个大类共26个经典算法进行了细致的公式推导和代码实现,旨在帮助机器学习学习者和研究者完整地掌握算法细节、实现方法以及内在逻辑。人工智能12万字