文化伟人代表作图释书系:算术与几何系列(套装4册)在线阅读
会员

文化伟人代表作图释书系:算术与几何系列(套装4册)

自然科学数学111万字

更新时间:2021-05-27 18:10:14 最新章节:索引

立即阅读
加书架
下载
听书

书籍简介

本套书包括:《几何原本》《九章算术》《自然哲学的数学原理》《算术研究》共四册。《几何原本》共有十三卷,其中第一卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形面积相等的条件;第二卷讲如何把三角形变成面积相等的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术的理论;后讲述立体几何的内容。《算术研究》的正文则分为七章。第一章讨论数的同余;第二章讨论一次同余方程;第三章讨论幂剩余并证明了费马小定理;第四章讨论二次同余方程;第五章系统扩展了二次型的理论(这使得高斯必然地成为了群论的先驱之一);第六章讨论了前述理论在特殊情况下的运用;第七章讨论了分圆方程,这一章也被认为是本书最精彩的内容。《自然哲学的数学原理》是牛顿的科学才华处于巅峰时期所写的旷世巨著,是他“个人智慧的伟大结晶”。牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。《九章算术》总共收集246个数学问题并提供其解法,这些算法要比欧洲同类算法早1500多年,对世界数学发展产生了重要影响。
译者:邹忌 任海洋 邹涌 邵林
上架时间:2020-04-01 00:00:00
出版社:重庆出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行

最新章节

(古希腊)欧几里得 张苍 (德)高斯 (英)牛顿
主页

最新上架

  • 会员
    在人类的历史长河中,数学家们总结发现过许多奇妙的数学问题,它们如夜空中的繁星,闪烁着熠熠星辉,体现了客观世界的规律之美、人类的智慧之美以及自然界的和谐之美。直到今天,这些经典的数学问题仍然受到大家的喜爱。阅读并思考这些问题,是启迪数学思维、培养兴趣爱好、拓宽知识视野的好方法。本书精选了32个专题,每个专题都以故事的形式分享了数学问题背后的历史故事及人物轶事,设置了同类的例题进行详细讲解,还精选了8
    江安海编自然9.4万字
  • 事实并非如此,作者通过亲身经历,揭示了数学的真正魅力,证明了每个人都能学好数学。作者通过本书挑战了我们对数学的传统认知,打破了束缚我们思维的枷锁。作者不仅分享了自己如何从一个数学“差生”成长为热爱数学的优等生的故事,还提供了一系列的学习方法和策略,帮助孩子建立起对数学的积极态度。她强调,数学不仅仅是一门学科,更是一种思维方式,一种解决问题的工具。全书共分为三个部分,第一部分揭示了阻碍孩子们学习数学
    (美)沙琳妮·夏尔马自然10万字
  • 会员
    本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算
    端木宁自然1.6万字
  • 会员
    本书是以作者多年的概率与统计讲义为蓝本扩充而成,目前也是威斯康星大学的经济学教材。本书采用微积分的方式而非测度论的的方式讲述,涵盖概率论基本知识、随机变量、分布、抽样、大数定律、中心极限定律、逼近理论、最大似然估计、矩方法、假设检验、置信区间等经济学专业所需数理统计知识的方方面面,难度适中,适于作为经济专业高年级本科生和研究生的教材。
    (美)布鲁斯·E.汉森自然17.6万字
  • 会员
    本书以数学实例揭示数学潜在的规律,同时探索用美学原理指导数学创造和发现的途径。内容包括:数,科学的语言;形,数的伴侣;数与形,相得益彰;曲线,大自然的写真;抽象,数学的灵魂;无穷,艰难的旅程。
    吴振奎自然14字
  • 会员
    本书共28章,内容涉及:尺规作图——跨越两千年的探索、柏拉图多面体、几何错视与数学艺术、迷人的镶嵌、阿波罗尼奥斯定理、完美正方形、梅涅劳斯定理和塞瓦定理、翩翩起舞的蝴蝶定理等。
    黄家礼 戴中元自然0字
  • 会员
    本书从几个著名数学问题出发,讲解了与我国初高中的教学实际紧密联系的数学知识,并把知识内容与数学核心素养结合起来,穿插介绍知识内容的历史发展过程,对相关数学分支在数学史上的地位进行深入思考,并辅之以数学文化、趣味知识、数学游戏、数学悖论等茂盛枝叶。
    邵勇自然7字
  • 会员
    本书既包含了莱布尼兹创建微积分的过程,也包含了莱布尼兹在微积分优先权争论期间为自己做出的申辩,从中可以了解他创建微积分的过程以及这场争论发生的部分缘由和过程。
    (德)莱布尼兹自然118字
  • 会员
    本书在分析线性代数的历年考研真题以及参考近年来各大考研名师模拟试卷中的精彩好题的基础上,将线性代数考查的重点和难点内容分成12个专题进行讲解,每个专题都配有适量的典型例题及习题,力求做到让考生“看一个专题,就吃透一个专题”,彻底学会线性代数的解题方法和技巧。
    王凯冬编著自然0字