- 新生儿基因筛查
- 赵正言 周文浩 梁德生主编
- 940字
- 2025-03-19 15:08:07
参考文献
1.PORTIN P.The elusive concept of the gene.Hereditas,2009,146:112-117.
2.冯作化,药立波.生物化学与分子生物学.3版.北京:人民卫生出版社,2015.
3.查锡良.生物化学与分子生物学.9版.北京:人民卫生出版社,2018.
4.杨焕明.科学与科普:从人类基因组计划谈起.科普研究 ,2017,12(3):5-7.
5.左伋.医学遗传学.7版.北京:人民卫生出版社,2018.
6.CINGOLANI P,PLATTS A,WANG LE L,et al.A program for annotating and predicting the effects of single nucleotide polymorphisms,SnpEff:SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.Fly(Austin),2012,6(2):80-92.
7.DIAS R,TORKAMANI A.Artificial intelligence in clinical and genomic diagnostics.Genome Med,2019,11(1):70.
8.ESTEVA A ,ROBICQUET A ,RAMSUNDAR B,et al.A guide to deep learning in healthcare.Nat Med,2019,25(1):24-29.
9.RAJKOMAR A,OREN E,CHEN K,et al.Scalable and accurate deep learning with electronic health records.NPJ Digit Med,2018,1:18.
10.ESTEVA A,KUPREL B,NOVOA RA,et al.Dermatologist-level classification of skin cancer with deep neural networks.Nature,2017,542(7639):115-118.
11.GUROVICH Y,HANANI Y,BAR O,et al.Identifying facial phenotypes of genetic disorders using deep learning.Nat Med,2019,25(1):60-64.
12.HANNUN AY,RAJPURKAR P,HAGHPANAHI M,et al.Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network.Nat Med,2019,25(1):65-69.
13.ATTIA ZI,KAPA S,LOPEZ-JIMENEZ F,et al.Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram.Nat Med,2019,25(1):70-74.
14.LEUNG MK,XIONG HY,LEE LJ,et al.Deep learning of the tissue-regulated splicing code.Bioinformatics,2014,30(12):i121-129.
15.MARMAR CR,BROWN AD,QIAN M,et al.Speechbased markers for posttraumatic stress disorder in US veterans.Depress Anxiety,2019,36(7):607-616.
16.LIANG H,TSUI BY,NI H,et al.Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence.Nat Med,2019,25(3):433-438.
17.CLARK MM,HILDRETH A,BATALOV S,et al.Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation.Sci Transl Med,2019,11(489):eaat6177.
18.POPLIN R,CHANG PC,ALEXANDER D,et al.A universal SNP and small-indel variant caller using deep neural networks.Nat Biotechnol,2018,36(10):983-987.
19.KIRCHER M,WITTEN DM,JAIN P,et al.A general framework for estimating the relative pathogenicity of human genetic variants.Nat Genet,2014,46(3):310-315.
20.SUNDARAM L,GAO H,PADIGEPATI SR,et al.Predicting the clinical impact of human mutation with deep neural networks.Nat Genet,2018,50(8):1161-1170.
21.RIESSELMAN AJ,INGRAHAM JB,MARKS DS.Deep generative models of genetic variation capture the effects of mutations.Nat Methods,2018,15(10):816-822.
22.KELLEY DR,RESHEF YA,BILESCHI M,et al.Sequential regulatory activity prediction across chromosomes with convolutional neural networks.Genome Res,2018,28(5):739-750.
23.ALIPANAHI B,DELONG A,WEIRAUCH MT,et al.Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning.Nat Biotechnol,2015,33(8):831-838.
24.ZHOU J,TROYANSKAYA OG.Predicting effects of noncoding variants with deep learning-based sequence model.Nat Methods,2015,12(10):931-934.
25.ZHOU J,PARK CY,THEESFELD CL,et al.Wholegenome deep-learning analysis identifies contribution of noncoding mutations to autism risk.Nat Genet,2019,51(6):973-980.
26.HSIEH TC,MENSAH MA,PANTEL JT,et al.PEDIA:prioritization of exome data by image analysis.Genet Med,2019,21(12):2807-2814.
27.YU KH,ZHANG C,BERRY GJ,et al.Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features.Nat Commun,2016,7:12474.
28.BASTARACHE L,HUGHEY JJ,HEBBRING S,et al.Phenotype risk scores identify patients with unrecognized Mendelian disease patterns.Science,2018,359(6381):1233-1239.
29.RAUSCHERT S,RAUBENHEIMER K,MELTON PE,et al.Machine learning and clinical epigenetics:a review of challenges for diagnosis and classification.Clin Epigenetics,2020,12(1):51.
30.ANGERMUELLER C,LEE HJ,REIK W,et al.DeepCpG:accurate prediction of single-cell DNA methylation states using deep learning.Genome Biol,2017,18(1):67.
31.GORDON ES,BABU D,LANEY DA.The future is now:Technology's impact on the practice of genetic counseling.Am J Med Genet C Semin Med Genet,2018,178(1):15-23.
32.VAYENA E,BLASIMME A,COHEN IG.Machine learning in medicine:Addressing ethical challenges.PLoS Med,2018,15(11):e1002689.
33.SIRUGO G,WILLIAMS SM,TISHKOFF SA.The Missing Diversity in Human Genetic Studies.Cell,2019,177(1):26-31.